Diffusion tensor imaging of the corpus callosum in Autism.
نویسندگان
چکیده
The corpus callosum is the largest commissural white matter pathway that connects the hemispheres of the human brain. In this study, diffusion tensor imaging (DTI) was performed on subject groups with high-functioning autism and controls matched for age, handedness, IQ, and head size. DTI and volumetric measurements of the total corpus callosum and subregions (genu, body and splenium) were made and compared between groups. The results showed that there were significant differences in volume, fractional anisotropy, mean diffusivity, and radial diffusivity between groups. These group differences appeared to be driven by a subgroup of the autism group that had small corpus callosum volumes, high mean diffusivity, low anisotropy, and increased radial diffusivity. This subgroup had significantly lower performance IQ measures than either the other individuals with autism or the control subjects. Measurements of radial diffusivity also appeared to be correlated with processing speed measured during the performance IQ tests. The subgroup of autism subjects with high mean diffusivity and low fractional anisotropy appeared to cluster with the highest radial diffusivities and slowest processing speeds. These results suggest that the microstructure of the corpus callosum is affected in autism, which may be related to nonverbal cognitive performance.
منابع مشابه
Fiber Tractography and Diffusion Tensor Imaging in Children with Agenesis and Dysgenesis of Corpus Callosum: A Clinico-Radiological Correlation
Background Corpus callosum is the largest commissure in human brain. It consists of tightly packed white matter tracts connecting the two cerebral hemispheres. In this study we aimed to evaluate role of fiber tractography (FT), and diffusion tensor imaging (DTI) in ped...
متن کاملComparison of white matter integrity between autism spectrum disorder subjects and typically developing individuals: a meta-analysis of diffusion tensor imaging tractography studies
BACKGROUND Aberrant brain connectivity, especially with long-distance underconnectivity, has been recognized as a candidate pathophysiology of autism spectrum disorders. However, a number of diffusion tensor imaging studies investigating people with autism spectrum disorders have yielded inconsistent results. METHODS To test the long-distance underconnectivity hypothesis, we performed a syste...
متن کاملAtypical development of white matter microstructure of the corpus callosum in males with autism: a longitudinal investigation
BACKGROUND The corpus callosum is the largest white matter structure in the brain, and it is the most consistently reported to be atypical in diffusion tensor imaging studies of autism spectrum disorder. In individuals with typical development, the corpus callosum is known to undergo a protracted development from childhood through young adulthood. However, no study has longitudinally examined t...
متن کاملAltered corpus callosum morphology associated with autism over the first 2 years of life.
Numerous brain imaging studies indicate that the corpus callosum is smaller in older children and adults with autism spectrum disorder. However, there are no published studies examining the morphological development of this connective pathway in infants at-risk for the disorder. Magnetic resonance imaging data were collected from 270 infants at high familial risk for autism spectrum disorder an...
متن کاملOp-brai150122 2046..2058
Numerous brain imaging studies indicate that the corpus callosum is smaller in older children and adults with autism spectrum disorder. However, there are no published studies examining the morphological development of this connective pathway in infants at-risk for the disorder. Magnetic resonance imaging data were collected from 270 infants at high familial risk for autism spectrum disorder an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 34 1 شماره
صفحات -
تاریخ انتشار 2007